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Abstract
Introduction—Cortical thickness mapping is a widely used method for the analysis of
neuroanatomical differences between subject groups. We applied power analysis methods over a
range of image processing parameters to derive a model that allows researchers to calculate the
number of subjects required to ensure a well-powered cross-sectional cortical thickness study.

Methods—0.9-mm isotropic T1-weighted 3D MPRAGE MRI scans from 98 controls (53
females, age 29.1 ± 9.7 years) were processed using Freesurfer 5.0. Power analyses were carried
out using vertex-wise variance estimates from the coregistered cortical thickness maps,
systematically varying processing parameters. A genetic programming approach was used to
derive a model describing the relationship between sample size and processing parameters. The
model was validated on four Alzheimer’s Disease Neuroimaging Initiative control datasets (mean
126.5 subjects/site, age 76.6 ± 5.0 years).

Results—Approximately 50 subjects per group are required to detect a 0.25-mm thickness
difference; less than 10 subjects per group are required for differences of 1 mm (two-sided test, 10
mm smoothing, α = 0.05). Sample size estimates were heterogeneous over the cortical surface.
The model yielded sample size predictions within 2–6% of that determined experimentally using
independent data from four other datasets. Fitting parameters of the model to data from each site
reduced the estimation error to less than 2%.

Conclusions—The derived model provides a simple tool for researchers to calculate how many
subjects should be included in a well-powered cortical thickness analysis.
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INTRODUCTION
Coregistration of cortical thickness maps derived from whole-brain T1-weighted MRI, and
subsequent vertex-wise statistical inference, is a popular method for localizing differences in
cortical gray matter between groups of subjects. The method allows the investigator to
noninvasively determine how disease or environmental factors are related to neuroanatomy.
Researchers and funding bodies use power analyses to provide guidance on how many
subjects should be included in a study to have a good chance of detecting a real effect,
balancing the probability of a false negative (type II error) with the desire not to waste
valuable resources studying more subjects than necessary. The aim of this study was to
derive a model that allows researchers to determine the number of subjects per group that
should be included in a cross-sectional cortical thickness analysis, as a function of image
processing parameters, to ensure the analysis is well-powered.

Failure to detect an existing thickness difference is an example of a type II error. Methods
for controlling the probability of making a type II error are collectively known as power
analysis. Power is defined as 1 − β, where β is the type II error rate. Traditionally, standard
power for a well-designed study is equal to 0.8. There are three factors, described by Cohen
[1988], that affect the power of a study. These three factors will be described in the context
of cross-sectional cortical thickness studies:

1. Effect size: In cortical thickness studies, the effect size corresponds to cortical
thickness differences between groups. A study aiming to detect a larger thickness
difference than a similarly designed study aiming to detect a smaller thickness
difference will have higher power. In this study, we investigated the detection of
hypothetical vertex-wise thickness differences between 0.125 and 1 mm. We have
used an unstandardized measure of effect size, the thickness difference in mm, in
preference to standardized measures such as Cohen’s d, because the thickness of
the cortex is a property with an easily interpretable physical meaning [Wilkinson,
1999].

2. How well the sample resembles the population: Cortical thickness studies rely on
sampling to draw inferences about the population of interest. The more subjects
that are randomly sampled, the closer the sample will resemble the population.
More included subjects will always improve the power of a study.

3. Type I error rate alpha (α): The type I error rate determines the standard of proof
required to declare a thickness difference statistically significant. A typical vertex-
wise cortical thickness study may involve a few hundred thousand vertices, and
subsequent statistical inferences, over the cortical sheet. These analyses are
therefore described as “mass univariate.” Mass univariate analyses mean that the
standard α level of 0.05 will give an unacceptably high level of vertex-wise type I
errors (false positives). The multiple comparisons problem is normally accounted
for by lowering α. A lower α constitutes a higher standard of proof; because of the
more stringent standard of proof, a vertex-wise cortical thickness study will always
be poorly powered relative to a nonmass univariate study with the same number of
subjects. The effect of lowering α on the number of subjects required for a well
powered analysis was investigated in this study.

There are two further factors specific to cross-sectional cortical thickness analyses that
affect the power of a study. The first is the variability of vertex-wise cortical thickness
estimates over the cortical sheet. Because a typical cortical thickness analysis is mass
univariate, power analyses should be carried out at each vertex. In this way, we can map the
number of required subjects for a given set of parameters (thickness difference, power level,
α, and variance). Mapping the number of subjects in each group allows us to determine the
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spatial variability of the number of required subjects over the cortex. It is possible that some
cortical regions will require more subjects for a well powered investigation than other
regions.

The second factor specific to cross-sectional cortical thickness analyses is the spatial extent
of surface-based smoothing applied to the coregistered cortical thickness maps. Surface-
based smoothing is necessary to make the data more normally distributed, improving the
validity of the statistical tests used to make inferences. The smoothing also corrects for
residual misalignment following coregistration. The spatial extent of the smoothing biases
the analysis towards detecting focal thickness differences of the same spatial extent due to
the matched filter theorem. We investigated the relationship between spatial smoothing and
the required number of subjects for a well-powered study.

In this study we use a genetic programming approach to empirically model the relationship
between the number of subjects required per group for a well-powered cross-sectional
cortical thickness study and the size of the thickness difference (effect size), the type I error
rate, the smoothing filter and the “sidedness” of the statistical test, that is, one- or two-sided
tests [Schmidt and Lipson, 2009]. Our model will allow researchers to estimate how many
subjects per group they need to scan to detect thickness differences of a given magnitude.
The model will be validated on MRI data acquired from different scanners and subject
cohorts. The validation procedure will determine how useful the derived model will be for
other research groups. Model parameters are provided that allow researchers to tailor the
number of required subjects to specific cortical regions. Novel aspects of the study include
mapping the number of required subjects over the cortical sheet, and providing a simple
equation for calculating the number of subjects per group based on cohort- and image-
processing parameters.

METHODS
Participants and Image Acquisition

Ninety-eight neurologically normal controls (53 females, age 29.1 ± 9.7 years) were
included in the study. All participants provided informed consent. Whole brain T1-weighted
3D MPRAGE MRI was acquired on a 3-T Siemens TIM Trio Scanner. Image acquisition
parameters were as follows: TR = 1900 ms, TI = 900 ms, TE = 2.6 ms, flip angle = 9°, voxel
resolution = 0.9 mm isotropic.

Four additional control MRI datasets were used to validate the sample size model derived as
part of this study. These data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.lo-ni.ucla.edu). The datasets consisted of whole brain
T1-weighted 3D MPRAGE image acquisitions with voxel resolutions of 1 mm by 1 mm in-
plane and 1.2-mm slice thickness [Jack Jr et al., 2008]. Two 3 T datasets were analyzed,
designated by ADNI as Normal-bl-3.0T and Normal-m12–3.0T, comprising 60 subjects (38
females, mean age 75.2 ± 4.8 years) and 54 subjects (34 females, mean age 76.3 ± 5.0
years), respectively. Two 1.5-T datasets were also analyzed, designated Normal-m06-1.5T
and Normal-m24-1.5T, comprising 214 subjects (101 females, mean age 76.6 ± 5.1 years)
and 178 subjects (85 females, mean age 78.1 ± 4.9 years), respectively.

Image Processing
Cortical thickness mapping and intersubject coregistration were carried out using the
standard Freesurfer 5.0 processing stream [Fischl and Dale, 2000]. Individual cortical
thickness maps were coregistered to the supplied “fsaverage” template. Coregistered cortical
thickness maps were smoothed using the surface-based smoothing filter supplied with the
Freesurfer distribution. Smoothing with spatial extents of 5, 10, 15, 20, and 25 mm full
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width at half maximum was applied to each subject. The general linear model was used to
estimate and correct for the effects of age and sex at each vertex in the coregistered,
smoothed cortical thickness maps. The effect of age and sex correction on the sample size
estimates was investigated by conducting a vertex-wise sample size calculation on both
corrected and uncorrected thickness maps.

Power Analysis
Standard methods for power analysis, based on normal distribution statistics, were used to
calculate the number of subjects required in each group to adequately control for the
likelihood of a type II error. Standard deviation was estimated vertex-wise from the
coregistered, smoothed cortical thickness maps. Power analyses were conducted for
hypothetical effect sizes of 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1 mm. Direct
measures of effect size in mm were used in this study, as one of the advantages of cortical
thickness mapping is that the technique measures a property of the cortex that has physical
meaning. However, given the nonuniform thickness of the cortex, some researchers may
prefer to use standardized measures such as percentage change in cortical thickness. An
analysis was undertaken in which sample sizes required to detect a hypothetical 10% change
in cortical thickness was measured. Power was set at 0.8 and sample size calculations based
on a two-sample T-test were used. One- and two-sided power analyses were performed. The
type I error rate α was set at 0.05, 0.025, 0.005, 0.0025, and 0.0005. Power analyses were
carried out using the power. t.test function provided with the statistical software package
“R” (http://www.r-project.org/).

The calculated minimum sample size required for adequate power was calculated at each
vertex and mapped back onto the fsaverage template. In this way, whole brain maps of
minimum sample size were derived using the above parameters. The 95th percentile of the
distribution of vertex-wise minimum sample size estimates was used to calculate whole-
brain and lobar values. The 95th percentile was chosen to ensure almost complete coverage
of the brain or lobe of interest without being biased by the upper 5% of vertices. The PALS-
B12 lobar atlas [Van Essen, 2005] provided with the Freesurfer 5.0 distribution was used to
estimate the number of subjects required for an adequately powered study on a per-lobe
basis. In summary, the effects of changing effect size, smoothing filter, type I error rate (α)
and one-sided and two-sided analyses on the minimum sample size for a well-powered
cross-sectional cortical thickness analysis, mapped over the whole cortical sheet, were
explored in this study. The large number of independent variables (effect size, smoothing
filter, type I error rate and “sidedness”) made reporting the estimates of minimum number of
subjects per group as a function of these variables unwieldy. An empirical formula allowing
for the calculation of the minimum number of subjects per group as a function of the
independent variables was calculated using the genetic programming approach implemented
in the software package “Eureqa” (http://www.eureqa.com, version 0.83 beta, Schmidt and
Lipson [2009]). Eureqa was used to search for a function f such that

where effect size is the thickness difference in mm, smoothing is the extent of the smoothing
filter as described above, α is the type I error rate, and is.one.sided is a binary variable set to
1 for a one sided analysis and 0 for a two-sided analysis. The symbolic building blocks used
to obtain the solution were constrained to constants, addition, subtraction, multiplication,
division, square root, and logarithmic operators. The Eureqa software internally validates the
derived model by subdividing the input data into a training set, used to derive an equation
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describing the relationship between the explanatory variables, and a test set used to evaluate
the derived equation.

The form of the equation derived in the previous section was used to estimate lobar-specific
relationships between the number of subjects in each group and the previously described
explanatory variables. Constant parameters in the previously derived whole cortex equation
were reevaluated on a per-lobe basis using nonlinear least-squares estimation.

The applicability of the derived model to MRI data acquired at different sites was evaluated
by comparing whole brain sample sizes estimated using the derived model with
experimentally determined sample sizes evaluated from the four ADNI datasets. The mean
absolute error, expressed as a percentage of the experimentally determined sample size, was
used to evaluate how well the model estimated the sample size. Two sets of constant
parameters were used; the first were the default parameters derived using the model fitting
procedure described above, and the second utilized constant parameters derived by applying
nonlinear least squares estimation of the model parameters using sample size estimates from
each ADNI dataset.

Comparison with Previous Studies
A previous study has reported that seven subjects per group are required to detect a change
of 0.2 mm in a cross-sectional analysis [Han et al., 2006]. In order to test the comparability
of our derived estimates of the number of subjects per group, an analysis was undertaken
using the same parameters from the cited study; namely a thickness difference of 10% at
each voxel, α = 0.05, one-sided analysis, power = 0.9 and a surface-based smoothing kernel
with FWHM extent of 6 mm. Due to the use of slightly different parameters to the main
body of this study (power = 0.9 and surface smoothing = 6 mm FWHM) these results will be
presented separately from the primary analysis. A similar analysis was undertaken to
compare estimated numbers with the analysis presented in Lerch and Evans [2005]. In this
case, we used a thickness difference of 0.6 mm, α = 1.222 × 10−4 (calculated from the
reported adjusted t-threshold of 4.67 and 24 degrees of freedom), surface-based smoothing =
30 mm and power = 0.95. It should be noted that the Lerch et al. study used a 3D smoothing
filter to obtain an estimate of 25 subjects per group; in our case, as previously noted, we
used a surface-based smoothing filter.

RESULTS
In the following summary of results, the default parameters used are a thickness difference
of 0.25 mm, spatial smoothing of 10 mm, a type I error rate of 0.05 and two-sided analyses,
except where indicated. Mapping the distribution of the number of subjects per group
required for a well-powered cross-sectional cortical thickness analysis reveals considerable
heterogeneity over the cortical surface (Fig. 1). Regions such as the anterior temporal lobe,
insula, and supra-marginal gyrus require considerably more subjects than other cortical
regions in order to reliably detect a cortical thickness difference of the same magnitude. A
map of the number of subjects per group required to detect a 10% change in cortical
thickness, with other parameters held at their default values, was generated and is provided
as Supporting Information Figure 1. Correcting for age and sex revealed a modest but
consistent reduction in sample size estimates over the cortex. For the default parameters
listed above, the average reduction in subjects per group for a well-powered analysis was
1.35 subjects (Supporting Information Fig. 2).

Using the PALS-B12 lobar atlas allows the estimation of the minimum number of required
subjects on a per-lobe basis (Fig. 2). The per-lobe analysis indicates that, in order to cover
95% of each lobe, the frontal, parietal and occipital lobes require ~30 subjects, whereas the
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temporal lobe requires approximately fifty subjects to detect a 0.25-mm thickness difference
(10 mm spatial smoothing, α = 0.05, two-sided analysis). In order to cover 95% of limbic
structures, 234 subjects would need to be included to detect a 0.25-mm thickness difference.
In our study limbic structures refer to the medial surface of each hemisphere of the cortex,
primarily encompassing the cingulate gyrus and parahippocampal gyrus. These results
indicate that cortical thickness measurements in the limbic structures have a high variance,
and cross-sectional comparisons of cortical thickness in the limbic structures will be
underpowered relative to the other cortical lobes.

The empirical relationship between the minimum number of subjects per group and effect
size, smoothing, α and one- or two-sided tests is described by Eq. (1):

(1)

where N is the number of subjects per group, θ is the thickness difference in mm, smoothing
is the extent of the surface-based smoothing kernel in mm, α is the type I error rate and p is
a binary variable with p = 1 for one-sided analyses and p = 0 for two-sided analyses. Whole-
brain and per-lobe estimates of the parameter values k1..6 are provided in Table I. The mean
absolute error of the difference between the number of subjects per group predicted by the
model and those derived from the imaging dataset is less than one subject for each cortical
region, indicating that the model is an excellent fit.

The dataset used to derive the above equation, and an implementation of the equation in the
software language R, are provided at http://www.brain.org.au/software/cortex/power. The
nonlinear fitting procedure was unable to obtain usable parameter estimates for the limbic
structures using the model presented in this study. If the reader is interested in estimates of
the number of subjects per group required for the limbic structures, refer to the data-set
provided at the link above.

The minimum number of subjects required to reliably detect a given thickness difference
over the cortical surface is reduced as the thickness difference increases (Fig. 3). In order to
reliably detect a cortical thickness change of 0.25 mm over 95% of the entire cortical
surface, around 60 subjects are required in each group with surface-based smoothing of 10-
mm FWHM. For a thickness difference of 1 mm, less than 10 subjects are required in each
group. The spatial extent of the smoothing filter has a strong effect on the number of
subjects required for a well-powered analysis, with the number of subjects required to detect
0.25 mm ranging from greater than 160 when no smoothing is applied to around 20 subjects
when a large smoothing filter of 25 mm is applied (Fig. 4).

A more stringent statistical threshold corresponds to a lower α level. We investigated the
effect of applying a more stringent threshold as this approach is the standard technique for
controlling excessive false positives associated with the multiple comparisons problem.
Each order of magnitude decrease in α, for example from 0.05 to 0.005, requires
approximately 40 more subjects to achieve the same level of power (Fig. 5).

Comparing model-derived sample size estimates with those calculated using control data
acquired from different sites (and age range of the control subjects) indicates that the mean
percentage error varies from 1.96 to 6.28% (Table II). Re-evaluating the constant parameters
by fitting the derived model to site-specific data using a nonlinear least squares estimation
approach reduces the mean percentage error to between 1.35 and 1.72%.

By applying the parameters reported in a previous study to our cohort ([Han et al., 2006]
effect size 0.2 mm, 6 mm FWHM smoothing kernel, power = 0.9, and α = 0.05), we found
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that the number of subjects required in each group for a well-powered cortical thickness
analysis to cover 95% of the cortex is 121 subjects per group. For coverage of 50% of the
cortex, which would be obtained if the average of the vertex-wise across-subjects standard
deviation was used in the power calculation (as per Han et al 2006), 27 subjects would be
required per group. Following parameters reported in Lerch et al. [2005] (effect size of 0.6
mm, 30 mm FWHM surface-based smoothing kernel, power = 0.95, and α = 1.22 × 10−4,
calculated from a t-threshold of 4.67), 14 subjects per group would be required to detect a
thickness difference of 0.6 mm over 95% of the cortical surface.

DISCUSSION
We have derived sample-size estimates over the surface of the cortical sheet for the
detection of cortical thickness differences between two groups of equal number and
variance, assuming normally distributed test statistics. The primary outcome of this study is
a simple equation that allows researchers to estimate the number of subjects per group
required for a well-powered cross-sectional cortical thickness study as a function of study-
specific parameters, including the thickness difference to be detected, the applied level of
smoothing, and the type I error rate. The number of subjects required per group for a well-
powered cross-sectional cortical thickness analysis is heterogeneous over the surface of the
cortical sheet. The heterogeneous distribution may be due to natural variability in cortical
thickness over the cortical surface, acquisition-based variability, or difficulty modeling the
cortical surface in regions of high topological complexity. Brain regions that require a low
number of subjects for a reasonably powered study include the central sulcus, the sylvian
fissure, and the calcarine and parieto-occipital fissures. The low variance in these regions is
most likely because these cortical folds are consistent across individuals, and across-subject
registration in Freesurfer is based on aligning cortical folding patterns.

The variability of sample size estimates across the cortex has important implications for the
interpretation of the results of previous studies, as well as future study planning. If a study
has reported a significant thickness difference in the frontal lobes, for example, it is possible
that the sample sizes used in the study did not provide enough power for the detection of the
same cortical thickness difference in the temporal lobes. Conversely, given the similarity in
required sample sizes in the frontal lobe and parietal lobes (and even less in the occipital
lobes, Fig. 2), the researcher could be more confident that the absence of a similar effect in
the parietal and occipital lobes is “real” and that they have not made a type II error in these
regions.

The validation of our derived model against sample size estimates calculated from additional
control datasets from the ADNI study provide supportive evidence that the derived model
can provide useful guidance for prospective studies carried out at other sites and over
different age ranges. The low percentage difference between the model and empirically
derived sample size estimates (final column in Table II, mean less than 1.72% for all four
cohorts) suggests that the derived model appropriately describes the relationship between
image processing parameters and sample size. If no control data is available at the site, and
the image acquisition parameters are reasonably similar to the parameters in this study (and
appropriate for cortical thickness mapping), we recommend using the mean percentage
errors and standard deviations provided in Table II to modify sample size estimates to
ensure a well powered study is carried out over the whole cortex. A conservative approach
would be to calculate a sample size using Eq. (1), then adding 9.98% (= 6.28 + 2 × 1.85,
mean + 2 × SD) to the estimated value to account for across site variability. If control data
are available, the methods described in this article could be used to derive more appropriate
sample size estimates that are likely to be lower than the estimates derived from the
approach just described. We have provided a software package that allows researchers to
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estimate the number of subjects required for a cortical thickness study at http://
www.brain.org.au/software/cortex/power. The provided software can calculate sample sizes
whether preliminary control data are available or not. We have not investigated pediatric
populations in this study. These groups have previously documented nonlinear age related
thickness changes [Sowell et al., 2004; Shaw et al., 2006]. In these circumstances our
estimates may be too low; for a more accurate estimate we recommend carrying out a
vertex-wise power analysis on preliminary data using the routines provided.

It should be noted that our sample size calculations are based on Freesurfer-derived cortical
thickness estimates. The validation of cortical thickness estimates derived from Freesurfer
mean that we are confident that thickness estimates are representative of the actual cortical
thickness over the cortical sheet [Rosas et al., 2002; Kuperberg et al., 2003]. The same
statement cannot be made about alternative methods for mapping cortical thickness that
have not necessarily been subject to the same level of scrutiny. Therefore we recommend
against applying the sample size estimates from our derived model to non-Freesurfer-based
cortical thickness studies. However we do recommend undertaking a vertex-wise or voxel-
wise power analysis, as described in this study, for alternative cortical thickness mapping
methods. The software package provided at http://www.brain.org.au/software/cortex/power
could be easily modified for this task. Similarly, the use of lower quality MRI scans than
that used in this study, whether a lower spatial resolution or poorer contrast, will mean that
more subjects will be required to achieve an adequately powered study. The authors of
Freesurfer provide guidelines on minimum standards for data quality (available at http://
surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferBeginnersGuide at the time of publication).
Most modern clinical MRI scanners are capable of acquiring 3D structural T1-weighted MRI
scans that meet these standards. A potential future application of the techniques presented in
this article is to provide a direct quantitative estimate of the benefit of improvements in MR
image acquisition and analysis for cross-sectional studies.

Both one- and two-sided analyses are presented as the choice depends on whether the
investigator has a prior hypothesis regarding the direction of the cortical change. For
example the majority of studies in neurodegenerative disorders such as Alzheimer’s disease
report focal cortical thickness reductions in the patient group [Lerch et al., 2005]. Normal
aging in adults is also associated with global cortical thickness reduction [Salat et al., 2004].
However cortical thickness increase may be associated with the patient group, such as focal
cortical dysplasia [Bernasconi et al., 2001], carriers of genes associated with schizophrenia
susceptibility [Cerasa et al., 2011], and autism [Hardan et al., 2006]. If a researcher wishes
to restrict themselves to looking for cortical thickness changes in one direction (e.g.,
thickness decrease in the patient group), the estimated subject group numbers based on one-
sided analyses may be used. For research studies with no prior hypotheses as to the direction
of the thickness change, subject group numbers based on the two-sided analyses are
appropriate. Given that cortical thickness mapping is a fairly new technique, we recommend
that any prospective studies should base their sample size estimates on a two-sided analysis.

By accounting for spatial variability, our method allows the number of subjects required to
be better tailored to the particular cortical region of interest for a prospective study. The
number of required subjects per group is also affected by the magnitude of the thickness
difference the researcher hopes to detect. Surprisingly, many published research papers do
not report the magnitude of the detected cortical thickness differences between groups.
Presumably this is due to the conventional approach of displaying a map of supra-threshold
P-values to indicate regions in which statistically significant differences in thickness exist,
rather than a map of the effect size. Although the aim of this article is not to
comprehensively document reported cortical thickness differences in the literature, some
examples include reported cortical thickness differences between 0.1 and 0.6 mm [Lazar et
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al., 2005; Sowell et al., 2008; Acosta et al., 2009; Kubota et al., 2010; Tunnard et al., 2011;
Wallace et al., 2010; Cerasa et al., 2011]. One would hope that as the field matures the
practice of providing information on the magnitude of reported cortical thickness differences
between subject groups will become commonplace.

The results of this study indicate that as the applied surface smoothing increases, the number
of subjects required per group decreases. The authors recommend against interpreting this
finding as an argument in favor of using a large smoothing filter, as the analysis is
maximally sensitized to detecting focal abnormalities with the same spatial extent as the
filter, by the matched filter theorem. One should therefore tailor the smoothing filter size to
the expected extent of the cortical abnormality whenever practical. The spatial extent of the
smoothing filter is unlikely to perfectly match the hypothetical abnormality. This means that
a thickness difference will be averaged with some cortex in which there is no substantive
difference in thickness. For this reason, the magnitude of the estimated cortical thickness
differences, particularly in an exploratory study, may be an underestimate of the true
thickness difference.

Finally, we investigated the effect of a more stringent type I error rate on the number of
subjects required per group for a well-powered study. More stringent type I error rates, in
the form of a lower P-value, are applied to adjust for the increased incidence of false
positive findings in mass univariate analyses. Although the application of a large number of
statistical tests constitutes a mass univariate approach, there is a certain level of spatial
dependence of cortical thickness. For example, sensory cortex is consistently thinner than
temporal lobe cortex. The use of smoothing also increases the spatial dependence of vertex-
wise estimates. For this reason, traditional methods for threshold adjustment based on
multiple tests, such as the Bonferroni method, are overly conservative. Typical methods for
adjusting the threshold in cortical thickness analyses are false positive rate threshold
adjustment [Genovese et al., 2002], permutation-based methods [Sowell et al., 2004], and
cluster-based thresholding. Regardless of the type of threshold adjustment, a more stringent
α level is used as a threshold for statistical significance.

The most commonly used method for adjusting the significance threshold in cross-sectional
cortical thickness analyses, false discovery rate, requires a distribution of P-values. Because
we do not carry out vertex-wise comparisons with a patient group in this study, we do not
have a P-value distribution and so cannot specify any single adjusted P-value threshold.
Furthermore, the false discovery rate threshold is inversely related to the spatial extent of the
hypothetical thickness difference [Genovese et al., 2002]. It is unlikely the researcher will
know the spatial extent in advance, and so a reasonable value for a lower α must be inferred
from previous studies. It is difficult to get an idea of adjusted thresholds from the literature,
as vertex-wise cortical thickness analysis studies often report the threshold as “P < 0.05
adjusted for multiple comparisons” with the adjustment method of choice, without reporting
the actual adjusted P-value threshold. However some example adjusted thresholds from the
literature are P = 0.005 [Kubota et al., 2010] and P = 0.00035 [Lazar et al., 2005],
suggesting that [0.05, 0.0005] is a reasonable interval for adjusted thresholds. For vertex-
wise cross-sectional cortical thickness studies to achieve a level of power equivalent to a
well-powered “single” univariate analysis, the researcher would need to include up to 140
subjects per group to detect a difference of 0.25 mm when the type I error rate is set at
0.0005, depending on other factors explored in this study such as smoothing filter and
location on the cortical sheet.

Previous cortical thickness studies that provided estimates of sample sizes based on power
analyses did not adopt the approach of explicitly mapping the number of required subjects
over the cortical sheet and did not provide a method for estimating the number of subjects
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per group based on thickness difference, effect size and other image processing parameters
[Han et al., 2006]. With regard to the Han et al study, our estimate of 27 subjects per group
contrasts with the reported seven subjects per group required to detect a 10% thickness
reduction in each voxel. We believe that this difference is primarily due to differences in the
definition of standard deviation used for power calculations in the two studies. The Han et al
study substituted vertex-wise estimates of the mean value of the absolute differences as a
measure of the standard deviation. In our study we used the commonly accepted definition
of standard deviation, that is, the square root of the variance, using a denominator of n − 1.
These gave contrasting estimates of the standard deviation of 0.12 mm [Han et al., 2006]
compared with an average vertex-wise across-subject standard deviation of 0.36 mm for
age-corrected, 6 mm FWHM smoothed data calculated from the cohort presented in this
article. It is probable that the different standard deviation estimates are the reason behind our
considerably higher estimates in the number of subjects per group required to detect a
thickness difference of 0.2 mm with an α = 0.05. The Lerch study reports that a group size
of 25 subjects can detect a 0.6 mm thickness change after smoothing with a 30-mm FWHM
surface-based diffusion smoothing kernel [Lerch and Evans, 2005]. Analysis of our dataset
gives a lower estimate of 14 subjects per group using similar processing parameters. The
difference may reflect differences in the cortical thickness mapping and coregistration
techniques utilized in the Lerch et al. [2005] study; in particular the Lerch et al. study did
not use a surface-based registration method. Our study also had the advantage of a
considerably larger cohort (98 subjects compared with 25 subjects in the Lerch study and 15
subjects in the Han study) which may improve vertex-wise estimation of the variance of
cortical thickness.

In this study we have limited ourselves to power analyses of cross-sectional comparisons of
cortical thickness between two subject groups. Sample size estimates for alternative methods
of investigation have not been explored, such as correlating cortical thickness changes
against a continuous variable, or longitudinal studies in which thickness changes are tracked
across multiple time points in a group of individuals. Additional metrics that are derived
from the cortical modeling procedure carried out by Freesurfer, such as volume and
curvature measures, may also benefit from power analyses. In pathologies where more than
one measure is affected, it would be useful to determine which parameter has the most
statistical power for detecting changes in the patient group. Future research will focus on
applying methods for sample size estimation to these modes of analysis.

In summary, we have provided a comprehensive investigation of how many subjects should
be included to ensure a well-powered cross-sectional cortical thickness study. We have
investigated the spatial variability of the number of subjects per group over the cortical
surface, and provided estimates of this number on a per-lobe level. Finally, we have
provided a simple equation that provides estimates of sample size as a function of standard
study specific parameters. The outcomes of this study will allow researchers planning
prospective studies to recruit and image appropriately sized cohorts to detect regional
cortical thickness differences.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Inflated surface view of the number of subjects required per group to detect a thickness
difference of 0.25 mm. Lateral view in the top row, medial view on the bottom row.
Standard deviation was estimated from 98 neurologically normal controls. 10 mm FWHM
surface smoothing, power = 0.8, type I error rate = 0.05, two-sided analysis. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2.
Number of subjects required per group to detect a change of 0.25 mm over 95% of each
major lobe after 10 mm FWHM surface smoothing. Regions were derived from the PALS-
B12 lobar atlas. The limbic lobe required 234 subjects per group and was omitted from the
plot. Power = 0.8, type I error rate = 0.05, two-sided analysis. The dashed horizontal lines
indicate the equivalent one-sided analysis. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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Figure 3.
Number of subjects required to detect given effect size over 95% of the entire cortical
surface (green circles), temporal lobe (blue triangles), and occipital lobe (pink squares). The
dashed lines show the predicted number of subjects per group according to Eq. (1). 10 mm
surface-based smoothing, power = 0.8, type I error rate = 0.05, two-sided analysis. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.
The effect of applied smoothing filter on the number of subjects required to detect a vertex-
wise thickness difference of 0.25 mm over 95% of the whole cortex (green circles), temporal
lobes (blue triangles), and occipital lobes (pink squares). The analysis is maximally
sensitized to detecting focal abnormalities with the same spatial extent as the smoothing
filter; the use of a more extensive smoothing filter does not necessarily increase the power of
the study. The dashed lines show the predicted number of subjects per group according to
Eq. (1). Power = 0.8, type I error rate = 0.05, two-sided analysis. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.
The effect of more stringent significance threshold (type I error rate α) on the number of
subjects required to detect a thickness difference of 0.25 mm over 95% of the cortical
surface (green circles), temporal lobe (blue triangles), and occipital lobes (pink squares).
The dashed lines represent subject numbers as predicted by Eq. (1). 10 mm FWHM surface
smoothing, power = 0.8, two-sided analysis. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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TABLE II

Validation of the derived model using MRI data acquired from different sites and age ranges of subjects

Cohort Default parameters (% mean error ± SD) Cohort specific parameters (% mean error ± SD)

Normal-bl-3.0T 2.16 ± 1.48 1.52 ± 1.38

Normal-m12-3.0T 1.96 ± 1.59 1.72 ± 1.52

Normal-m06-1.5T 4.31 ± 1.7 1.35 ± 1.28

Normal-m24-1.5T 6.28 ± 1.85 1.51 ± 1.29

Mean absolute percentage errors suggest that the derived model is appropriate for similar quality MRI data acquired at different sites. The second
column uses the values of k1–k6 from the original model Eq. (1). The third column uses new values of k1–k6 estimated by fitting Eq. (1) to

cortical thickness measurements from each of the four ADNI cohorts.
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